The orthogonal planes split of quaternions and its relation to quaternion geometry of rotations
نویسنده
چکیده
Recently the general orthogonal planes split with respect to any two pure unit quaternions f, g ∈ H, f = g = −1, including the case f = g, has proved extremely useful for the construction and geometric interpretation of general classes of double-kernel quaternion Fourier transformations (QFT) [7]. Applications include color image processing, where the orthogonal planes split with f = g = the grayline, naturally splits a pure quaternionic three-dimensional color signal into luminance and chrominance components. Yet it is found independently in the quaternion geometry of rotations [3], that the pure quaternion units f, g and the analysis planes, which they define, play a key role in the spherical geometry of rotations, and the geometrical interpretation of integrals related to the spherical Radon transform of probability density functions of unit quaternions, as relevant for texture analysis in crystallography. In our contribution we further investigate these connections.
منابع مشابه
OPS-QFTs: A new type of quaternion Fourier transforms based on the orthogonal planes split with one or two general pure quaternions
We explain the orthogonal planes split (OPS) of quaternions based on the arbitrary choice of one or two linearly independent pure unit quaternions f ,g. Next we systematically generalize the quaternionic Fourier transform (QFT) applied to quaternion fields to conform with the OPS determined by f ,g, or by only one pure unit quaternion f , comment on their geometric meaning, and establish invers...
متن کاملThe Orthogonal 2D Planes Split of Quaternions and Steerable Quaternion Fourier Transformations
The two-sided quaternionic Fourier transformation (QFT) was introduced in [2] for the analysis of 2D linear time-invariant partialdifferential systems. In further theoretical investigations [4, 5] a special split of quaternions was introduced, then called ±split. In the current chapter we analyze this split further, interpret it geometrically as an orthogonal 2D planes split (OPS), and generali...
متن کاملQuaternions and Rotations *
Up until now we have learned that a rotation in R3 about an axis through the origin can be represented by a 3×3 orthogonal matrix with determinant 1. However, the matrix representation seems redundant because only four of its nine elements are independent. Also the geometric interpretation of such a matrix is not clear until we carry out several steps of calculation to extract the rotation axis...
متن کاملA brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملUnderstanding quaternions
The invention of the calculus of quaternions is a step towards the knowledge of quantities related to space which can only be compared for its importance with the invention of triple coordinates by Descartes. The ideas of this calculus, as distinguished from its operations and symbols, are fitted to be of the greatest use in all parts of science.-Clerk Maxwell, 1869. Quaternions came from Hamil...
متن کامل